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Abstract. We study the role of strategy correlations and timing of adaptation for the dynamics of Minority
Games, both simulationally and analytically. Using the exact generating functional approach à la De
Dominicis we compute the phase diagram and the behaviour of batch and on-line games with correlated
strategies, complementing exisiting replica studies of their statics. It is shown that the timing of adaptation
can be relevant; while conventional games with uncorrelated strategies are nearly insensitive to the choice
of on-line versus batch learning, we find qualitative differences when anti-correlations are present in the
strategy assignments. The available standard approximations for the volatility in terms of persistent order
parameters in the stationary ergodic states become unreliable in batch games under such circumstances.
We then comment on the role of oscillations and the relation to the breakdown of ergodicity. Finally, it
is discussed how the generating functional formalism can be used to study mixed populations of so-called
‘producers’ and ‘speculators’ in the context of the batch Minority Games.

PACS. 02.50.Le Decision theory and game theory – 87.23.Ge Dynamics of social systems – 05.70.Ln
Nonequilibrium and irreversible thermodynamics – 64.60.Ht Dynamic critical phenomena

1 Introduction

The collective behaviour of interacting heterogeneous and
adaptive agents has attracted a substantial amount of at-
tention in the statistical physics communtity in recent
years. The general aim is to understand how complex
macroscopic co-operation can emerge from the underlying
microscopic laws that govern the behaviour of the individ-
ual agents. The Minority Game (MG) [1] is probably one
of the most studied models in this context. It describes an
ensemble of traders who at each time step receive a piece
of public information and react by either buying or selling.
Learning from past experience, the aim of the individual
agent is to be in the minority at each round of the game,
i.e. to buy when most of the traders are selling and vice
versa. To take their trading decisions the agents employ
strategies assigned randomly at the start of the game and
then kept fixed. These effectively act as look-up tables pro-
viding a map from the observed public information onto
a binary trading decision. At each time step the individ-
ual agent employs the strategy in his or her pool he or
she believes will maximise their potential payoff. In order
to measure the performance of their strategies they allo-
cate virtual points to each of their strategies, increasing
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the score of strategies that would have yielded a correct
minority decision.

Thanks to the simplicity of the microscopic equations
of motion and because of analogies to models of spin-
glasses and neural networks, analytical progress can be
made using both static and dynamical methods of statisti-
cal mechanics. It has been found that the relevant control
parameter for MGs is the ratio α = P/N of the num-
ber P of possible values for the external information over
the number of players N . A phase transition between an
ergodic phase at high α and non-ergodic states below a
critical value αc has been identified and analytical expres-
sions for the macroscopic order parameters characterising
the different states have been obtained [2–7]. While some
order parameters in the ergodic phase can be computed in
the thermodynamic limit N → ∞ without making any ap-
proximations, the dynamics of the game in its non-ergodic
phase at low values of α is not yet fully understood. Fur-
thermore the calculation of a key observable of the MG,
the magnitude of the overall market fluctuations or so-
called volatility, is up to now restricted to approximations
both in dynamical approaches and in static replica analy-
ses [6,3].

In the original setup of the MG the strategies as-
signed to a given agent were completely uncorrelated and
the information fed to the agents was based on the real
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history of the market dynamics [1,8]. Also, updates of
the virtual scores of the agents’ strategies were performed
after each round of the game, and their relative success
re-assessed before each trading decision, i.e. agents could
switch strategies between any two successive rounds of the
game. Such variants of the MG with score updates at ev-
ery round of the game are generally referred to as ‘on-line’
games. It was realised that no qualitative changes in the
overall behaviour occured when the stream of information
was replaced by random inputs at each time step [9]. Here-
after we shall therefore distinguish between on-line games
with ‘real’ or ‘random’ market history, respectively. It is
technically much easier to deal with the case of ‘random’
history so henceforth we concentrate on this version (see
however the recent work [10] for a generating functional
analysis of MGs with real market histories). Early stud-
ies showed only slight differences between on-line MGs
with uncorrelated strategies and corresponding games in
which the agents effectively sample a large set of informa-
tion patterns before updating the scores of their strate-
gies. This amounts to replacing the inflowing information
by an averaging procedure over all possible values of the
pieces of information to yield an effective interaction be-
tween the agents; such models are known as ‘batch’ Mi-
nority Games. On the technical level, using this effective
interaction, the dynamics of batch MGs are much easier
to study than their on-line counterparts, and hence most
current dynamical studies are concerned with batch ver-
sions of the MG [6,11–15]. Also, here we restrict ourselves
to the case of deterministic decision making; a stochastic
extension is straightforward to consider [16], but compli-
cates the detailed mathematics of the analysis. Reviews
on the MG can be found in [17,18]; note also the recently
published textbooks [19,20].

In this paper we extend the generating functional anal-
ysis of batch and on-line games with uncorrelated strate-
gies as presented in [6,22] to the case of correlated and
anti-correlated strategies. The purpose is twofold, firstly
we provide an analysis of the dynamics of such MGs
with so-called ‘diversified’ strategies and complement the
study of their statics previously presented by other au-
thors in [2]. Secondly, we find that in the presence of anti-
correlated strategies significant differences in the global
behaviour of batch and on-line MGs are present, i.e. that
the the overall performance of the system strongly de-
pends on the timing of adaptation of the agents. This
effect is small in the case of conventional MGs with
uncorrelated strategies, but becomes magnified as the de-
gree of anti-correlation in the strategy assignments is in-
creased. We also demonstrate that some approximations
which reproduce the the volatility of batch MGs with un-
correlated strategies with good accuracy, and are hence
often considered to be standard, become inaccurate in
games with highly anti-correlated strategies. We then dis-
cuss the effects of strategy correlations on the sensitivity
to initial conditions and comment on the relation between
the global oscillations and the breakdown of ergodicity in
batch and on-line MG with different strategy correlations.
As a by-product of the generating functional analysis of

the dynamics of games with general distributions of cor-
relation parameters we finally study the case of bi-modal
distributions, corresponding to a mixed population of so-
called ‘speculators’ and ‘producers’

2 Model definitions

The MG describes the decision making dynamics of N in-
teracting agents, i = 1, . . . , N . At each round � of the
game all agents are given the same external information
I(�) taken from a set of P elements. They utilize this in-
formation to determine an action by choosing from one of
a personal set of S strategies whose operation on the in-
formation yields a decision. Simulations have shown that
restriction to S = 2 strategies per agent yields characteris-
tic behaviour. It also simplifies the analysis. Hence we re-
strict the further discussion here to this case. We also sim-
plify the choices of the space of information and character
of the decisions. Hence here we take each agent to hold
two P -dimensional strategy vectors Ria = (R1

ia, . . . , R
P
ia),

a = ±1, with each component Rµ
ia chosen randomly from

the set {−1, 1} at the beginning of the game and there-
after fixed and the information to be given by an integer
µ(�) chosen randomly and independently at each step �
from the set {1, . . . , P = αN}. Then the strategies act
as look-up tables for deciding ‘trading’ action, yielding
output Rµ(�)

ia . If player i decides to use strategy a∗i (�) at
round � of the game his or her trading action will be
bi(t) = R

µ(�)
ia∗

i (�). The re-scaled total bid at stage � is then

defined as A(�) = N−1/2
∑

i bi(�). In order to decide which
of their two strategies to use at any given time each play-
ers keeps a record of the relative performance of his or
her strategies. A payoff value pia(�) is assigned to each
strategy and updated every M time steps according to

pia(�+M) = pia(�) − Γ√
N

�+M−1∑

�′=�

R
µ(�′)
ia A(�′). (1)

In between the updates the scores pia are kept constant.
Γ > 0 is a learning rate and of order O(N0), introduced
for convenience [22]. Note that the minus sign in the up-
date prescription ensures that strategies which predict
correct minority decisions are rewarded. At each round
player i then plays the strategy in his or her arsenal
with the highest relative score, i.e. a∗i (�) = sgn[qi(�)],
where qi(�) = 1

2 (pi,1(�) − pi,−1(�)) is the point difference
of player i’s strategies at time �. Upon introduction of
ωi = (Ri,1 + Ri,−1)/2 and ξi = (Ri,1 − Ri,−1)/2 the
update rule (1) can be compactified to

qi(�+M) = qi(�) − Γ√
N

�+M−1∑

�′=�

ξ
µ(�′)
i

×
{

N−1/2
∑

j

(
ω

µ(�′)
j + ξ

µ(�′)
j sj(�′)

)}

. (2)

Here we have introduced the shorthand nota-
tion si(�) = sgn[qi(�)], we will also abbreviate
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Ω = N−1/2
∑

j ωj . The case M = 1 (where strategy
scores are updated at every time step) is referred to as the
on-line model. For M ≥ O(αN) one expects (and simula-
tions confirm) the behaviour of the system to be the same
as that for the so-called batch version in which the sum
over the actual values µ(�′) is replaced by an average over
the set µ ∈ {1, . . . , αN}:

qi(t+ 1) = qi(t) − Γ

N

αN∑

µ=1

ξµ
i






∑

j

(
ωµ

j + ξµ
j sj(t)

)




. (3)

Note that an appropriate re-scaling of time is implied,
as one batch time step corresponds to O(αN) on-line
steps. Introducing the notation Jij = Γξi · ξj/N and
hi = Γξi ·Ω/

√
N the batch update rule (3) can be written

compactly as

qi(t+ 1) = qi(t) − hi −
∑

j

Jijsj(t). (4)

In the original game the strategies are chosen without
correlations between the agents and also independently
within the set of strategies of a fixed agent i, i.e. one has

Rµ
iaR

ν
jb = δijδabδµν , (5)

where · · · denotes an average over the disorder, i.e. over the
space of strategy assignments. In this paper, we will con-
sider cases of correlated strategy vectors Ri,−1 and Ri,1

of a fixed agent i. Specifically we generalize the standard
case to a situation in which Rµ

i1 = Rµ
i2 with probability

ρi ∈ [0, 1] for any given i and µ (and Rµ
i1 �= Rµ

i2 with
probability 1− ρi, recall that the Rµ

ia take only values −1
and 1). The joint probability distribution of Rµ

i1 and Rµ
i2

is then given by

P (Rµ
i1 = x,Rµ

i2 = y) =
ρi

2
(δx,−1δy,−1 + δx,1δy,1)

+
1 − ρi

2
(δx,−1δy,1 + δx,1δy,−1) . (6)

The standard situation of independent strategies is cov-
ered as the special case ρi = 1/2 for all players i. On the
other hand, if ρi = 1, then player i holds two identical
strategy vectors, whereas for ρi = 0 he or she has two
opposite strategies, Ri,−1 = −Ri,1. Allowing the corre-
lation parameter ρi to depend on i adds another layer of
heterogeneity to the ensemble of agents: not only are their
strategies chosen at random and hence are heterogeneous
across the group of N players, but also the probability
distribution from which they are drawn may be different
for different agents. We will assume that each ρi is ran-
domly and independently drawn from a distribution P (ρ),
so that, for example, P (ρ) = δ(ρ−1/2) corresponds to the
standard game, with ρi = 1/2 for all i. Some of our re-
sults presented below have been summarized in the short
paper [23]. The statics of MGs with correlated strategies
were first studied using replica methods in [2]. Numerical
results are also found in [24], and in [25], where an effective

correlation between the assigned strategies was introduced
upon biasing the {Rµ

ia} towards one of the binary entries.
Let us finally, in this section, introduce the volatility,

σ2, of the market. It describes the variance of the total re-
scaled market bid A, and can be defined as the following
long-time average:

σ2 = lim
τ→∞ τ−1

∑

�≤τ

A(�)2. (7)

In on-line models the relevant average over the stochastic-
ity of the information is to be performed, as A(�) depends
on both the score valuations {qi(�)} and the value of the
external information µ(�). In deterministic batch games
this average is replaced by one over µ

σ2 = lim
τ→∞ τ−1

∑

t≤τ

P−1
P∑

µ=1

(Aµ(t))2, (8)

where Aµ(t) = Ωµ +N−1/2
∑

j ξ
µ
j sj(t). The volatility is a

measure for the global efficiency of the market; if σ2 = 0
supply and demand are always matched (A = 0) and trad-
ing is fully efficient. Non-zero volatilities however indicate
mismatches between the numbers of buyers and sellers,
and hence imply inefficient markets. For the mathemati-
cal analysis of batch MGs it is also convenient to introduce
the volatility matrix Ξ [6]

Ξtt′ = P−1
P∑

µ=1

Aµ(t)Aµ(t′). (9)

Note that σ2 = limτ→∞ τ−1
∑

t≤τ Ξtt, and that stochas-
tic trading with si(t) = ±1 taken randomly and indepen-
dently at any time step t would result in Ξtt′ = 1

2 (1+ δtt′)
in the thermodynamic limit. In particular σ2 = 1 is the
so-called random trading limit.

3 Generating functional and effective
single-agent process for the batch game

We will now turn to the generating functional analysis of
the batch process (3). The calculation is an extension of
the analysis of the standard game presented in [6].

3.1 Generating functional and disorder average

The moment generating functional corresponding to the
batch process of equation (3) reads

Z[ψ] =
∫

dq p0(q(0)) exp

(

i
∑

it

ψi(t)si(t)

)

∏

it

δ



qi(t+ 1) − qi(t) +
∑

j

Jijsj(t) + hi − θi(t)



 , (10)
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where we have introduced the usual source term contain-
ing the field variables {ψi(t)}. The {θi(t)} are additional
perturbation fields, introduced to generate response func-
tions, and p0(q(0)) denotes the probability distribution of
the initial score differences q(0) = (q1(0), . . . , qN (0)) from
which the dynamics is started.

The further analysis is standard and follows the lines
of [6]. The average over the strategy assignments can be
performed exactly in the thermodynamic limit N → ∞,
leading to a (quenched-strategy-) disorder averaged gen-
erating functional Z[ψ], from which all dynamical observ-
ables can be computed upon taking derivatives with re-
spect to the {ψi(t)} and {θi(t)}, finally taking the limit
in which these generating fields go to zero. The relevant
macroscopic order parameters of the resulting theory are
the weighted disorder-averaged correlation and response
functions of the original N -particle problem:

Ctt′ = lim
N→∞

1
N

∑

i

1 − ρi

1 − ρ
〈si(t)si(t′)〉, (11)

Gtt′ = lim
N→∞

1
N

∑

i

1 − ρi

1 − ρ

∂〈si(t)〉
∂θi(t′)

, (12)

where 〈. . .〉 denotes an average over initial conditions (as
specified by the distribution p0(q(0)). We use the notation
ρ =

∫
dρP (ρ)ρ for the first moment of the distribution

P (ρ) of correlation parameters1. While the numerator in
the unusual pre-factors (1 − ρi)/(1 − ρ) is a direct conse-
quence of the averaging procedure over the assignments of
correlated strategies, the denominator is chosen to ensure
that the equal time correlation function is equal to one,
Ctt = 12. For later convenience we shall take the inverse
characteristic time-scale Γ in the couplings Jij and the
fields hi to be given by Γ = 1/(1 − ρ).

In an extension of the procedure for uncorrelated
agents, by introducing auxiliary macroscopic functions re-
lateable to the correlation and response functions, per-
forming summations over the microscopic variables and
utilising extremal dominance in the limit N → ∞, the
computation results in an equivalence of the original
Markovian coupled N -particle dynamics to an ensemble
of non-Markovian single agent problems, explicitly involv-
ing the correlation and response functions C and G and
subject to self-consistently determined coloured noise.

Explicitly, the equivalence is to an ensemble of effec-
tive single agents with characteristic labels ρ subject to

1 Note that the overbar on ρ has a different meaning from
the other overbars, which indicate averaging over the quenched
disorder choices.

2 We assume here that ρ < 1, and exclude the case ρ = 1.
The latter case corresponds to a situation in which all agents
(except for a non-extensive number) have ρi = 1, and hence
hold two identical strategies. Such a game trivially leads to a
volatility σ2 = 1, corresponding to the random trading limit,
and exhibits no phase transition.

stochastic dynamics

qρ(t+ 1) = qρ(t) + θρ(t) − 1 − ρ

1 − ρ
α
∑

t′≤t

(1I +G)−1
tt′ sρ(t′)

+
√

α
1 − ρ

1 − ρ
ηρ(t); sρ(t) = sgn[qρ(t)] (13)

with fractional population P (ρ) and with {ηρ(t)} Gaussian
coloured noise of zero average and covariance

Λtt′ ≡ 〈ηρ(t)ηρ(t′)〉ηρ
= [(1I+G)−1D(1I+GT )−1]tt′ , (14)

where 1Itt′ = δtt′ and C, G and D (Dtt′ = ρ
1−ρ + Ctt′ for

all t, t′) are determined self-consistently across the ensem-
ble3. In the derivation of (13) we have assumed that the
perturbation fields θi(t) for players i with correlation pa-
rameter ρi = ρ are all identical, θi(t) = θρ(t), and that the
initial values qi(0) for agents i ∈ {j = 1, . . . , N |ρj = ρ} in
the original N -particle dynamics are all drawn indepen-
dently from the same distribution p0ρ(qi(0)), i.e. that the
distribution of initial values factorizes over agents with
the same correlation parameter ρ.

Note that the different single particle noises {ηρ} (for
different values of ρ) all have the same covariance ma-
trix Λtt′ , with no explicit dependence on ρ, but only an
implicit one on the distribution P (ρ) through the correla-
tion and response matrices C and G. Nevertheless we will
keep the subscript ρ in ηρ to distinguish the noise contri-
butions to the effective single-agent processes for different
values of ρ. The correlation and response functions Ctt′

and Gtt′ are then to be computed self-consistently as two-
fold averages over (i) the measure 〈. . . |ρ〉∗ generated by
the realizations of the process {qρ(t)}:

〈f [qρ]|ρ〉∗ =
∫

DqρDq̂ρp0(qρ(0))f [qρ]

× exp

(

i
∑

t

q̂ρ(t)(qρ(t+ 1) − qρ(t) − θρ(t))

)

× exp

(

iα
1 − ρ

1 − ρ

∑

tt′
q̂ρ(t)(1I +G)−1

tt′ sρ(t′)

−1
2
α

1 − ρ

1 − ρ

∑

tt′
q̂ρ(t)[(1I +G)−1D(1I +GT )−1]tt′ q̂ρ(t′)

)

,

(15)

3 A similar situation involving an ensemble of single agent
processes has been encountered in [13], where the author dis-
cusses a population of agents trading with different frequencies.
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and (ii) over the distribution P (ρ) of correlation parame-
ters. In detail one has

Ctt′ =
∫

dρP (ρ)
1 − ρ

1 − ρ
〈sρ(t)sρ(t′)|ρ〉∗

≡
∫

dρP (ρ)
1 − ρ

1 − ρ
Cρ(t, t′), (16)

Gtt′ =
∫

dρP (ρ)
1 − ρ

1 − ρ

∂

∂θρ(t′)
〈sρ(t)|ρ〉∗

≡
∫

dρP (ρ)
1 − ρ

1 − ρ
Gρ(t, t′), (17)

so that the different processes (13) (with different values of
ρ) are effectively coupled through the matrices C and G,
which appear in (13) and in the noise correlator (14)
and which at the same time are (weighted) averages over
the whole ensemble of representative agent processes. The
original N -agent dynamics and the self-consistent single
agent problem are equivalent in the thermodynamic limit
in the sense that disorder-averaged observables in the orig-
inal problem (such as the correlation and response func-
tions (11, 12)) are identical to the corresponding aver-
ages obtained from the ensemble of effective single-agent
processes (Eqs. (16, 17) for the correlation and response
functions). This equivalence extends to other macroscopic
observables, including the probability for a given agent to
‘freeze’ (i.e. to use only one of his or her two strategies) in
the long-run. We will use the resulting ‘fraction of frozen’
agents below in the further analysis of the effective agent
dynamics.

Due to the presence of the coloured noise {ηρ(t)} and
the retarded self-interaction term in equation (13) a direct
solution of the self-consistent problem defined by (13–17)
is in general impossible beyond the first few time steps. An
analysis of possible ergodic time-translation invariant sta-
tionary states is however feasible, and will be presented be-
low. Alternatively one can resort to a numerical iteration
of the representative agent problem using a method first
proposed in [26]. This effective Monte-Carlo integration
of the single agent problem allows one to determine the
correlation and response matrices C and G to arbitrary
precision without finite-size effects, but becomes more and
more costly computationally as the number of time steps t
is increased (due to required inversions of matrices of size
t× t at time step t).

This direct-iteration procedure does not require any
further assumptions on the properties of the dynamical
order parameters, and can be carried out for all values
of α in both the ergodic and non-ergodic regimes of the
game. In Figure 1 we display results for the volatility as
a function of α for unimodal distributions of the correla-
tion parameter, ρi = ρ for all i. We find good agreement
between the data obtained from a direct simulation of the
batch process (open symbols in Fig. 1) and from an iter-
ation of the effective single-agent process (solid markers),
respectively. This confirms the validity of the analytical
theory derived in this section for general P (ρ) in the spe-
cial case of unimodal distributions of strategy correlations.
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Fig. 1. Volatility as a function of α for different values of ρ
for the batch game (ρi = ρ ∀i). Open symbols are from simu-
lations of the batch process with N = 1000 agents, averaged
over 10 samples of the disorder, and run for 500 batch time
steps. Filled markers are results from a direct iteration of the
single-particle problem using the method of [26] (5 × 104 re-
alisations of the single-agent process are generated, and the
iteration is performed for 100 time steps). Circles: tabula rasa
start (qi(0) = 0), squares: biased starts (|qi(0)| = 1). Solid
lines are the approximation of (34) for the ergodic phase and
are continued as dashed lines into the non-ergodic phase (where
the ergodic theory is longer valid).

We will now proceed to analyse the single-effective
agent process further and to compute persistent order pa-
rameters in the ergodic stationary state, as well as the
phase diagrams of batch MGs with correlated strategies.

3.2 Persistent order parameters in the ergodic
stationary state

In order to analyse the ergodic state in the regime of large
α we will make the following assumptions: (i) the sys-
tem becomes stationary in the long-time limit, i.e. we will
assume temporal translation invariance, limt→∞Ct+τ,t =
C(τ) and limt→∞Gt+τ,t = G(τ), (ii) the absence of
anomalous response, i.e. we will assume that the inte-
grated response χ = limt→∞

∑
τ≤tG(τ) remains finite

and (iii) weak long-term memory, i.e. limt→∞Gtt′ = 0
for all finite t′.

The integrated response χ along with the
persistent part of the correlation function,
c = limt→∞ t−1

∑
τ≤tC(τ), will be the order pa-

rameters characterising the ergodic stationary states
of the game. The further analysis hence proceeds by
formulating closed equations for these persistent order
parameters.
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Following [6] we introduce the re-scaled quantity
q̃ρ(t) = qρ(t)/t, and find from (13)

q̃ρ(t) =
1
t
qρ(0) − 1 − ρ

1 − ρ

α

t

∑

t′<t

∑

t′′
(1I +G)−1

t′t′′sρ(t′′)

+ θρ +
√
α

t

√
1 − ρ

1 − ρ̄

∑

t′<t

ηρ(t′) (18)

Here, we have assumed that θρ(t) = θρ for all t, so that
θρ is a static perturbation. Now, upon taking the limit
t→ ∞ and writing q̃ρ = limt→∞ q̃ρ(t), we find

q̃ρ = −α1 − ρ

1 − ρ

sρ

1 + χ
+ θρ +

√

α
1 − ρ

1 − ρ
ηρ, (19)

where sρ = limt→∞ t−1
∑

τ≤t sgn[qρ(τ)] and
ηρ = limt→∞ t−1

∑
τ≤t ηρ(τ). Note that q̃ρ, sρ and ηρ are

random variables, coupled through equation (19) with
each realization corresponding to a realization of the sin-
gle agent process (13). The variance of the zero-average
Gaussian variable ηρ can be obtained from (14) and reads
〈
η2

ρ

〉
ηρ

= lim
τ,τ ′→∞

1
ττ ′

∑

t≤τ

∑

t′≤τ ′
[(1I +G)−1D(1I +GT )−1]tt′

=
ρ

1−ρ + c

(1 + χ)2
. (20)

The analysis now proceeds along the lines of [6], and we
distinguish between so-called ‘frozen’ and ‘fickle’ agents.
The distinction between frozen and fickle agents was first
introduced in [27] and is based on observations from nu-
merical simulations of batch and on-line MGs. One finds
that some of the trajectories qi(t) of the original dynamics
grow linearly in time in the stationary state, qi(t) ∼ t, so
that the corresponding (frozen) agent always employs the
same strategy. Other (fickle) agents keep switching strate-
gies, and their score difference remains finite. While the
distinction between frozen and fickle agents was originally
made on the level of the initial N -particle dynamics, the
same type of trajectories are also found in the realizations
of the effective single particle process (generated for ex-
ample using the method of [26]). Frozen effective agents
can be identified as those realizations of (13) for which
q̃ρ �= 0. One then has sρ = sgn[q̃ρ]. Using equation (19)
(setting θρ = 0) this is seen to be the case if |ηρ| > γρ,

where γρ =
√

α(1−ρ)
1−ρ

1
1+χ . On the other hand, a given real-

ization of the representative agent process is ‘fickle’ when
the score-difference qρ(t) fluctuates around a finite value,
with occasional zero-crossings, then one has q̃ρ = 0. This
is the case if |ηρ| < γρ, and then sρ = ηρ/γρ. Note in par-
ticular that for fickle (effective) agents sρ is a continuous
variable, −1 < sρ < 1, with a non-zero value indicating
that the corresponding effective agent employs his or her
strategies with different frequencies.

From this the fraction of frozen agents with strat-
egy correlation ρ can be computed4 by performing the

4 φ(ρ) is the probability for an agent with strategy correla-
tion ρ to be frozen.

Gaussian integral over ηρ (with variance given by (20)):

φ(ρ) = 〈θ(|ηρ| − γρ)|ρ〉ηρ

= 1 − erf
(
λ(ρ)√

2

)

, (21)

where we have introduced

λ(ρ) =

√
α(1 − ρ)

ρ+ (1 − ρ)c
. (22)

θ in (21) is the step function; θ(x) = 1 if x > 0, and
θ(x) = 0 otherwise. The corresponding persistent part of
the correlation function reads

c(ρ) ≡ lim
t→∞ t−1

∑

τ≤t

Cρ(τ)

=
〈
s2ρ
〉

ηρ

= 〈θ(|ηρ| − γ)〉ηρ
+
〈
(ηρ/γρ)2θ(γρ − |ηρ|)

〉
ηρ

= φ(ρ) +
1 − φ(ρ)
λ(ρ)2

− 1
λ(ρ)

√
2
π

exp
(−λ(ρ)2/2

)
.

(23)

Applying a static perturbation θρ in (19) is (up to a
prefactor

√
α(1 − ρ)/(1 − ρ)) identical to perturbing the

static random variable ηρ. Such perturbations applied in
the stationary state affect only fickle agents, for which we
have sρ = ηρ/γρ. The susceptibility χ(ρ) ≡ ∑

τ Gρ(τ) =
∂

∂θρ
〈sρ〉ηρ

may therefore be written as

χ(ρ) =

√
(1 − ρ)
α(1 − ρ)

〈
∂sρ

∂ηρ

〉

ηρ

= γ−1
ρ

√
(1 − ρ)
α(1 − ρ)

(1 − φ(ρ)) . (24)

From these equations the overall persistent correlation c
and susceptibility χ can be computed self-consistently as

c =
∫

dρP (ρ)
1 − ρ

1 − ρ
c(ρ), (25)

χ =
∫

dρP (ρ)
1 − ρ

1 − ρ
χ(ρ). (26)

To this end, note that inserting (21) and (22) into (23)
allows one to express c(ρ) in terms of c (and the model
parameters α and ρ).

4 Unimodal distribution of strategy
correlations

We will now first investigate the case of a unimodal dis-
tribution of strategy correlations, P (ρ′) = δ(ρ − ρ′), i.e.
the case where all ρi are equal, ρi ≡ ρ, with 0 ≤ ρ < 1.
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4.1 Stationary state in the ergodic regime and phase
diagram

In this case the above self-consistent set of equa-
tions (25, 26) for the order parameters c and χ can be
compactified considerably using equations (22, 23, 24) and
we find (with c = c(ρ), φ = φ(ρ), χ = χ(ρ) and λ = λ(ρ)):

c = 1 −
(

1 − 1
λ2

)

erf
(
λ√
2

)

− 1
λ

√
2
π
e−λ2/2, (27)

χ−1 =
α

erf
(

λ√
2

) − 1, (28)

where
λ =

√
α

(
ρ

1−ρ + c
) . (29)

Note that ρ = ρ in the case of unimodal P (ρ′) = δ(ρ−ρ′).
The fraction of frozen agents is given by φ = 1−erf(λ/

√
2).

Equations (27–28) agree with the corresponding equations
for the static order parameters obtained within a replica
symmetric theory [2]. They are easily solved numerically,
and exact analytical predictions for c, φ and χ as functions
of α can be obtained for 0 ≤ ρ < 1. Results for the persis-
tent correlation c are shown in Figure 2, and we find very
good agreement with numerical simulations for large α,
greater than critical values αc(ρ). The deviations at lower
values of α = P/N < αc(ρ) are due to a breakdown of
the ergodic theory, more precisely of the assumption of
finite integrated response [6]. The point αc(ρ) at which
this happens can be computed from equation (28). One
finds that χ → ∞ at a critical value of α = αc(ρ) given
by αc(ρ) = erf(λc/

√
2), where λc = λc(ρ) fulfills

erf
(
λc(ρ)√

2

)

= 1 +
ρ

1 − ρ
−
√

2
π

1
λc(ρ)

e−λc(ρ)2/2. (30)

Solving this equation numerically leads to the phase di-
agram depicted in Figure 3, with the critical line in the
(α, ρ) plane separating the ergodic phase (χ finite) and
the non-ergodic phase. This phase diagram for the MG
with diversified strategies was first obtained from the cor-
responding replica calculation in [2]. While macroscopic
observables such as the volatility are sensitive to the initial
conditions in the non-ergodic phase, α < αc(ρ), the start-
ing point is irrelevant in the ergodic phase, α > αc(ρ).
We display the volatility for so-called tabula rasa starts
(qi(0) = 0 for all i), and for randomly biased starts
(|qi(0)| = q0 = O(1)) in Figure 1.

4.2 Analytic approximations for the volatility

As we have seen it is possible to compute macroscopic or-
der parameters of the stationary state, such as the fraction
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Fig. 2. Persistent part c of the correlation function for the
batch game with ρi = ρ for all i and with tabula rasa initial
conditions. Connected symbols are data obtained from simu-
lations for N = 300 players, measured over 500 batch steps,
preceded by an equilibration period of 500 steps. The curves
are ρ = 0.9, 0.8, . . . , 0 from top to bottom. The solid lines are
the theoretical predictions for the ergodic regime and have been
continued as dashed lines by extrapolation of equations (27, 28)
into the non-ergodic phase below αc, where they are no longer
valid. The slight discrepancy between the theoretical lines and
the numerical data close to the predicted breakdown of the
ergodic theory is due to finite-size effects.
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Fig. 3. Phase diagram for the batch Minority Game with uni-
modal distribution of strategy correlations, P (ρ′) = δ(ρ′ − ρ).

of frozen agents or the persistent part of the correlation
function, exactly and in good agreement with simulations
in the ergodic regime for general values of ρ. We will now
turn to the magnitude of the market fluctuations σ2. By
performing a direct average in the generating functional,
it was shown in [6] that the disorder-averaged volatility
matrix Ξ is proportional to the correlator of the single-
particle noise in the effective agent process. Generalizing
the results of [6] to arbitrary values of ρ we find the fol-
lowing exact result:

Ξtt′ = (1 − ρ)Λtt′ = (1 − ρ)
[
(1I +G)−1D(1I +GT )−1

]
tt′ .

(31)
Thus, an exact calculation of the volatility requires the
computation of this matrix convolution, and hence the
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knowledge of both the long-term and transient behaviours
of the dynamical order parameters G(τ) and C(τ) in the
stationary state. To this end a full computation of the
time-translation invariant solutions of the self-consistent
representative agent problem would be necessary. Due
to the retarded self-interaction and the presence of the
coloured single-particle noise, this is in general impossi-
ble. One therefore has to resort to approximations, and the
generally accepted approach first presented in [6] aims at
expressing the market volatility in terms of the persistent
order parameters c, φ and χ.

To this end one separates the contribution of the frozen
agents to the correlation function C from the contribution
of the fickle agents and writes

C(t− t′) = φ+ (1 − φ) 〈sρ(t)sρ(t′)〉fi , (32)

where the average 〈. . .〉fi extends only over fickle agents.
Inserting this into (31) and recalling
σ2 = limT→∞ T−1

∑
t≤T Ξtt leads to

1
1 − ρ

σ2 =
ρ

1−ρ + φ

(1 + χ)2
+ (1 − φ)

× lim
τ→∞ τ−1

∑

t≤τ

〈


∑

t′≤t

(1I +G)−1
tt′ sρ(t′)





2〉

fi

. (33)

In [6], for ρ = 1/2, the authors proceeded by keeping only
the instantaneous contribution, t = t′, in the last term.
Generalizing their calculation to arbitrary 0 ≤ ρ < 1 one
obtains the following approximate expression

σ2 = (1 − ρ)
[
ρ/(1 − ρ) + φ

(1 + χ)2
+ (1 − φ)

]

. (34)

Figure 1 demonstrates that this approximation is in
good agreement with data from simulations of the origi-
nal batch process for ρ � 1/2, but that it becomes less
accurate as ρ is reduced. In particular we note that in
simulations we find volatilities σ2 > 1 in the ergodic
phase of batch games with largely anti-correlated strate-
gies, i.e. low values of ρ, while (34) predicts a volatility
below the random trading limit σ2 = 1 for all values of
ρ and α ≥ αc(ρ). We have verified explicitly that the
discrepancy between this analytical approximation and
the numerically measured volatility can be traced back
to the omission of the non-instantaneous terms in (33):
iterating the single-particle process using the Eissfeller-
Opper algorithm [26], measuring the contributions from
the frozen and fickle agents, respectively, and taking into
account all terms of (33) restores the agreement with di-
rect numerical simulations of the batch process. The dis-
crepancy between the approximation of equation (34) and
the volatility measured in simulations becomes extremal
in the fully anti-correlated case. In this case one finds no
frozen agents, and inserting ρ = 0 and φ = 0 into (34)
gives σ2 = 1 for α > αc(ρ = 0) = 1. In numerical simula-
tions of the batch process, however, we find a decreasing
relation σ2 = σ2(α), and σ2 = 1 is only approached in the

10
−1

10
0

10
1

α
10

−2

10
−1

10
0

10
1

σ2

1
α

1

σ2

Fig. 4. Volatility as a function of α for ρ = 0 for the
batch game. Connected symbols are from simulations started
from different initial conditions (circles are tabula rasa starts,
|qi(0)| = 0, squares are |qi(0)| = 2.0 and diamonds |qi(0)| =
10.0). The solid and dashed lines are the approximations of
equations (41) and (42) respectively. The vertical dot-dashed
line marks the analytically predicted location of the phase
transition at αc(ρ = 0) = 1. Inset: σ2 vs. α for ρ =
0.0, 0.01, 0.02, 0.03, 0.04, 0.05 from top to bottom (tabula rasa
starts).

limit α → ∞, see Figure 4. In the next section, we will
study the case of fully anti-correlated strategies in more
detail, and will derive different analytical approximations
for the global market fluctuations in this case.

4.3 The fully anti-correlated case

In the special case of completely anti-correlated strategies,
ρ = 0, and tabula rasa starts, we observe experimentally
that the system is always in a fully oscillating phase, i.e.
that all agents switch strategies at each time step, and
that accordingly C(τ) = (−1)τ for all τ . Equation (27)
for ρ = 0 is indeed solved by c = 0 so that no frozen
agents are possible. We will use this observation as an
ansatz, which will allow us to proceed analytically and to
give an approximate expression for the volatility, which
is different from the one (derived for general ρ) in the
previous section. Its derivation is similar to the analysis
of the non-ergodic state in the limit α→ 0 of the standard
batch MG [6]. In this limit of the game with uncorrelated
strategies a similar oscillatory state is found.

For ρ = 0, we have D(τ) = C(τ) = (−1)τ and using
equation (31), we conclude that the correlation matrix of
the single-particle noise in the stationary state is given
by Λtt′ = (−1)t−t′Υ 2, where Υ =

∑
τ (−1)τ (1I +G)−1(τ).

Thus, for any fixed realization of the single-particle noise
η0(t) must be of the form η0(t) = Υz(−1)t, where z is
a (static) Gaussian random variable of zero mean and
unit variance (note that the subscript in η0(t) indicates
that we are concerned with the case ρ = 0 in this sec-
tion, similarly for q0(t) and s̃0 below). A given stochastic
value of z determines the oscillation amplitude and sign
of the corresponding trajectory of the noise η0(t). The
volatility in this fully oscillatory state can be obtained as
σ2 = limT→∞ T−1

∑
t≤T Λtt = Υ 2, so that it remains to
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compute Υ . Upon introduction of

s̃0 ≡ lim
τ→∞ τ−1

∑

t≤τ

(−1)tsgn[q0(t)] (35)

we can use the identity

√
α
∑

t′′
〈η0(t)η0(t′′)〉η0

Gt′t′′ = 〈sgn[q0(t′)]η0(t)〉η0
(36)

(obtained by an integration by parts in the generating
functional [6]) to write Υ as

Υ = 1 − 1√
α
〈s̃0z〉z , (37)

where 〈. . .〉z denotes an average over the standard
Gaussian variable z. We have also used the fact that∑

τ (−1)τ (1I +G)−1(τ) = [1 +
∑

τ (−1)τG(τ)]−1 here [6].
In order to compute the average 〈s̃0z〉z, we note that

from the effective single-agent process we can derive the
relation

∆̃q0 = −αΥ s̃0 +
√
αη̃0 (38)

between the staggered averages s̃0 and

∆̃q0 = lim
τ→∞ τ−1

∑

t≤τ

(−1)t(q0(t+ 1) − q0(t)), (39)

η̃0 = lim
τ→∞ τ−1

∑

t≤τ

(−1)tη0(t). (40)

Since the effective agents are purely oscillatory [21], one
has sgn(∆̃q0) = −s̃0. Using equation (38) and the relation
η0(t) = Υz(−1)t we therefore require sgn[z] = −s̃0, i.e.
s̃0z = −|z| for any given realization of z with

√
αΥ |z| >

αΥ (and the corresponding realization of the effective
agent process). Since Υ comes out positive this is the case
for realizations with |z| > √

α. For |z| < √
α both signs

s̃0z = ±|z| are possible; using the Eissfeller-Opper algo-
rithm we have checked that indeed both signs are taken in
this case. A similar complication has been encountered in
the context of mixed Minority/Majority Games in [12,20],
see also the remark [21].

We have two possibilities to proceed: firstly, we can
assume that s̃0z = −|z| also for −√

α < z <
√
α, and

that deviations from this behaviour will only have a small
effect on the volatility. We then end up with the following
approximation

σ2 ≈
(

1 +
1√
α
〈|z|〉z

)2

=

(

1 +

√
2
πα

)2

. (41)

Alternatively, we can assume that both signs s̃0z =
±|z| are taken equally often for |z| < √

α so that this
interval does not contribute to the average 〈s̃0z〉z. We then
find

σ2 ≈
(

1 +

√
2
πα

e−α/2

)2

. (42)
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Fig. 5. Amplitude of oscillations of the correlation function as
a function of α for the batch game for ρ = 1/2 (filled markers)
and ρ = 0 (open markers). Results are from simulations with
N = 500 agents, run for 500 batch steps and averaged over
10 realisations of the disorder. In the simulations we measure
c1 in the stationary state as c1 = (2T )−1

∑2T
τ=T |C(τ + 1) −

C(τ )|, where T = 125 batch steps. Circles are data for tabula
rasa starts, squares from simulations with biased starts (q0 =
0.5). The vertical dashed lines mark the locations of the phase
transition of the games with uncorrelated strategies at αc(ρ =
1/2) ≈ 0.3374 and at αc(ρ = 0) = 1 for fully anticorrelated
strategies.

As depicted in the main panel of Figure 4 the approxi-
mations of (41) and (42) appear to form upper and lower
bounds of the volatility, respectively. Both approximations
become exact only in the limit α → 0, but reproduce the
behaviour of σ2 = σ2(α) quite well, even for larger values
of α ≈ 1.

We conclude this section by mentioning that the batch
MG with fully anti-correlated strategies, ρ = 0, is differ-
ent from the cases 0 < ρ < 1 in two respects: (i) the
fully anti-correlated case exhibits oscillatory behaviour,
C(τ) = (−1)τ , for all α, even above αc(ρ = 0) = 1,
whereas in all other cases oscillations decay above αc and
persist only in the non-ergodic phase, where one finds cor-
relation functions of the form C(τ) = c0 + c1(−1)τ for
τ > 05. This is illustrated in Figure 5, where we plot c1 as
a function of α for different values of ρ; (ii) the volatility
plotted as a function of α exhibits a minimum at αc(ρ)
for all 0 < ρ < 1, but is decreasing monotonically for
ρ = 0, see the inset of Figure 4. Nevertheless the station-
ary volatility in the fully anti-correlated case does depend
on initial conditions below αc(ρ = 0) = 1, whereas the
starting point is irrelevant for α > 1.

5 Below αc we find C(τ ) = c0 + c1(−1)τ for τ > 0 within the
experimental accuracy and with positive fitting parameters c0

and c1. We observe that c0 + c1 < 1 unless the case ρ = 0
or the limit α → 0 is considered. Trivially one always has
C(τ = 0) = 1.
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Fig. 6. Persistent part c of the correlation function for the
on-line game with ρi = ρ for all i and with tabula rasa initial
conditions. Connected symbols are data obtained from simula-
tions for N = 300 players, measured over 25000 on-line steps,
preceded by an equilibration period of 25000 steps. The curves
are ρ = 0.9, 0.8, . . . , 0 from top to bottom. The solid lines are
the theoretical predictions for the ergodic regime and have been
continued as dashed lines by extrapolation into the non-ergodic
phase below αc, where they are no longer valid. The slight dis-
crepancy between the theoretical lines and the numerical data
close to the predicted breakdown of the ergodic theory is due
to finite-size effects.

4.4 Comparison with the on-line game

We will now turn to the case of on-line learning rules, and
will discuss the influence of the timing of adaptation of the
agents on the behaviour of MGs with correlated strategies.

A generating functional theory for the on-line game
with random external information and uncorrelated
strategies has been worked out in [22]. The analysis has to
deal with the explicit dependence on the external informa-
tion, and inevitably requires a much more elaborate math-
ematical formalism than the analysis of the batch game.
The resulting theory is easily adapted to the case of gen-
eral strategy assignments with arbitrary correlations. We
will not report the mathematical details of the calculation,
but will only state that, in the ergodic regime, it leads to
self-consistent equations for the persistent order parame-
ters (such as c, φ and χ), which are identical to the ones
of the batch MG with general strategy correlations. As a
consequence, the location of the phase transition (marked
by an onset of diverging integrated response) is identical in
batch and on-line games with the same distribution P (ρ)
of correlation parameters. Results for the persistent corre-
lation c as a function of α are compared with simulations
of the on-line game with unimodular strategy correlations
in Figure 6. The on-line simulations shown in Figure 6
essentially also match those of the batch case shown in
Figure 2 for the ergodic region.

Numerical simulations, however, reveal crucial differ-
ences between the volatilities of the on-line and batch
games with correlated strategies. A comparison of Fig-
ures 1 and 7 shows that in their ergodic states the volatil-
ity of batch games can take values both above and below
the random trading limit σ2 = 1, whereas that in on-line
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Fig. 7. Volatility as a function of α for different values of ρ
for the on-line game (ρi = ρ for all agents). Solid lines are the
approximation of (44) for the ergodic phase and are continued
as dashed lines into the non-ergodic phase (where the ergodic
theory is no longer valid). Markers are from simulations of the
on-line process with N = 300 agents (N = 1000 for ρ = 0.9),
averaged over 10 samples of the disorder, and run for 105 on-
line time steps. Circles: tabula rasa start (qi(0) = 0), squares:
biased starts (|qi(0)| = 3).

games never exceeds σ2 = 1. The difference between the
volatilities of batch and on-line games becomes maximally
pronounced in the fully anti-correlated case, compare Fig-
ures 4 and 8. In the on-line game with ρ = 0 we find that
the volatility is equal to one for all α > αc(ρ = 0) = 1,
whereas it approaches this random trading limit only
asymptotically for α → ∞ in the batch case. Allowing
the agents to switch strategies only every M time steps
according to the update rule (2) one can interpolate be-
tween the batch and on-line cases6: Figure 9 shows the
volatility σ2 as a function of α for the fully anti-correlated
case for different intermediate choices of M . While small
values of M  P produce market fluctuations close to
those of the on-line game (which corresponds to M = 1),
the batch limit is obtained for M ≥ O(P ).

Similarly to the batch case, a computation of the tran-
sient parts of the dynamical order parameters would be
necessary to obtain exact expressions for the volatility
of on-line MGs. As this is in general not feasible, one
proceeds as in the batch case, and tries to find approx-
imate expressions in terms of the persistent order param-
eters only. Such an approach was first proposed for on-line
games in [22], and is slightly different from the approxima-
tions in the batch case. The approximation is based on the
observation that in mean-field disordered systems with de-
tailed balance fluctuation-dissipation relations can be used
to ‘transform away’ non-persistent parts of the response

6 Note also that some work on mixed populations of agents
with individual updating frequencies Mi is currently being fi-
nalised by other authors [30].
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Fig. 8. Volatility as a function of α for the on-line game at
ρ = 0, and for different values of the initial bias |qi(0)|. All
data is from simulations with N = 300 agents averaged over
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Fig. 9. Volatility of a MG with fully anti-correlated strategies
(ρi = 0 for all i) and in which switching of strategies is allowed
only every M time steps. The individual curves are for different
values of M . All data is from simulations performed at a con-
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information µ and were run for 106 on-line steps. Results are
averages over 20 realisations of the disorder. The corresponding
curves for the on-line and batch games are displayed as filled
symbols for comparison. The lines connecting the markers are
guides to the eye.

and correlation functions without changing averages of
single-time observables and averages of two-time quanti-
ties at infinite time-separations. For equilibrium systems
with detailed balance this approach is exact [28]. It can be
used to extract the static order parameters as obtained in
a replica-symmetric equilibrium approach from the gener-
ating functional equations. Details of this procedure can
be found in [28,29].

Although the MG does not exhibit detailed balance a
similar ad-hoc procedure for removing the non-persistent
parts of the order parameters has been successfully em-
ployed to obtain approximations for the volatility in [22].
It amounts to assuming that C and G are of the following
form:

Ctt′ = c+(1−c)δtt′, Gtt′ = χδ(1−δ)t−t′−1 (for t > t′),
(43)

with the limit δ → 0 to be taken at the end of the cal-
culation. In this way one preserves limτ→∞C(τ) = c and∑

τ G(τ) = χ, but removes non-persistent contributions.
This approach is easily generalised to the case of

unimodular distributions of the correlation parameter,
and upon making the standard assumptions on time-
translation invariance and ergodicity, one obtains the fol-
lowing approximate expression for the volatility

σ2 = (1 − ρ)
[
ρ/(1 − ρ) + c

(1 + χ)2
+ (1 − c)

]

, (44)

which differs only slightly from the approximate result for
the batch game, equation (34). As shown in Figure 7 this
approximation is accurate in the ergodic phase for all val-
ues of ρ, even in a regime where the corresponding ap-
proximation for the batch MG is not satisfactory to de-
scribe the volatility measured in numerical experiments.
We attribute the deviations slightly above the transition
to finite-size effects. Applying the same method to the
volatility of the batch game also leads to equation (44)
and hence to the same qualitative and quantative discrep-
ancy between the numerically measured and analytically
estimated volatilities in batch games with largely anti-
correlated strategies. See also [20] for alternative deriva-
tions of equation (44) for batch and on-line games with
uncorrelated strategies.

Equation (44) agrees with the approximation for the
volatility derived from the replica analysis of the MG
with diversified strategies [2]. We note that the analogue
of the removal of the non-persistent parts of C and G
in the dynamical approach is reflected by an assump-
tion on the cross-correlations between the agents in the
replica formalism of [2]. Based on the assumption that
〈sisj〉 = 〈si〉 〈sj〉 for i �= j the authors of [2] neglect a term
∆ ≡ N−1

∑
i�=j

∑
µ ξ

µ
i ξ

µ
j (〈sisj〉 − 〈si〉 〈sj〉), in the ergodic

phase (α > αc). Here again si(t) = sgn[qi(t)], and 〈. . .〉 de-
notes an average over time. While our findings concerning
the volatility suggest that this assumption is appropriate
in the on-line game, it appears to be inaccurate in the
batch game at low values of ρ. We have confirmed this nu-
merically in simulations of the batch MG. At fixed α > 1
we find that ∆ = ∆(α, ρ) is close to zero for large values
of ρ � 1, but increases as ρ approaches zero. While we do
not depict these results here, we will only point out that
for ρ = 0 we find oscillatory behaviour, si(t) = si(0)(−1)t,
at all α, so that 〈si〉 = 0, but 〈sisj〉 = ±1. One then has
〈sisj〉 − 〈si〉 〈sj〉 = ±1 �= 0 so that the above approxima-
tion fails.

To conclude the discussion of the volatility in on-line
models, we would like to mention that the volatility of
MGs with real histories and fully anti-correlated strategies
behaves qualitatively like the one of the on-line MG with
random history, with σ2 = 1 for α > 1 [31].

Finally, in this section, let us briefly address the role
of global oscillations in on-line MGs. As an analytical
treatment of this dynamical feature would require a so-
lution of the transient behaviour of the dynamical or-
der parameters (which is still awaited) the results in the
remainder of this section and in Section 4.5 are all based
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on direct numerical simulations of the games under con-
sideration. Anti-persistent behaviour in the on-line MG
with uncorrelated strategies and with real market histo-
ries was identified first in [27], where the authors find os-
cillatory behaviour below αc, but no persistent oscillations
in the high-α phase, in qualitative agreement with results
for batch games [6], recall also Figure 5. In [27] the au-
thors considered an on-line version of the MG in which
the agents use only the sign of the total bid to update
their strategy scores, i.e. a model, in which A(�′) in equa-
tion (1) is replaced by π(�′) = sgn[A(�′)]. We will refer
to this as the ‘sign-update’ rule, as opposed to the lin-
ear relation (1). The authors then consider a conditional
correlation function

Cππ(τ) = P−1
P∑

µ=1

〈π(�)π(�+ τ)|µ〉 (45)

in the stationary state, where the average 〈π(�)π(�+ τ)|µ〉
extends only over times � and � + τ for which µ(�) =
µ(� + τ) = µ. Similarly we can define a conditional ‘spin-
spin’ correlation function according to

Css(τ) = (NP )−1
P∑

µ=1

N∑

i=1

〈si(�)si(�+ τ)|µ〉 . (46)

Figure 10 demonstrates that the games both with un-
correlated strategies (ρ = 1/2), and with anti-correlated
strategies (ρ = 0), respectively, show anti-persistence in
their non-ergodic states, α < αc(ρ), but not above αc:
Cππ and Css exhibit oscillations of period 2P below αc,
but approach a constant value above the transition. In
particular the behaviour of the on-line game with anti-
correlated strategies appears crucially different from its
batch counterpart in this respect: in the batch game with
anti-correlated strategies we find oscillatory behaviour for
all values of α, whereas in the on-line case with real his-
tories and sign-updates, they are found only in the low-α
phase.

Before turning to the next section, we would like to
remark that the oscillations below αc, first reported in [27],
are generally not detected very easily in on-line games:
we have tested several other variations of the model and
observables and found that no oscillatory behaviour can be
observed if (i) the linear update (1) is used instead of the
sign-update prescription, (ii) if unconditional correlation
functions are considered instead of conditional ones or if
(iii) real market histories are replaced by fake histories.

While no persistent oscillations are found in uncondi-
tional correlation functions of on-line games with random
histories, oscillations emerge gradually for α < αc(ρ =
0.5) in the case of uncorrelated strategies, and for all α
in the anti-correlated case, as the time lag M between
two successive strategy updates is increased to approach
the batch limit, see Figure 11 (oscillation amplitude for
on-line games is not shown, but is indistinguishable from
zero on the scale of Fig. 11).

0 512 1024 1536 2048
τ

0

0.2

0.4

0.6

0.8

1

Css(τ)

 

0 512 1024 1536 2048
τ

0

0.05

0.1

0.15

0.2
 

0 512 1024 1536 2048
τ

−1

−0.5

0

0.5

Cππ(τ)

0 512 1024 1536 2048
τ

−0.05

−0.025

0

0.025

0.05

Fig. 10. Correlation functions for the on-line game with real
market histories. All data are from simulations at P = αN =
128, run for 105 on-line time steps. Left column: ρ = 0.5, the
oscillatory curves are at α = 0.1, below the transition, non-
oscillatory curves at α = 1.25, above the transition. Right col-
umn: ρ = 0.0, oscillatory curves α = 0.1, non-oscillatory curves
α = 1.58. The upper two panels show the ‘spin-spin’ correlation
function, Css(τ ), conditional on the information pattern, the
lower two panels the conditional correlation function, Cππ(τ ),
of the sign of the total bid π(�) = sgn[A(�)] (see text for fur-
ther explanations). Averages over 10 to 100 realisations of the
disorder are taken. Results for Cππ at ρ = 0 are displayed as
running averages over 64 points to smoothen the noisy raw
data.

4.5 Random timing of adaptation

Finally we have performed numerical simulations on MGs
with asynchronous, random timing of adaptation. Choos-
ing M ≥ O(P ) and allowing all agents independently and
randomly with probability 1/M to update their strategy
preferences at a given on-line step, while still updating
their score difference at each step, generates a batch-like
model with asynchronous updating. As depicted in Fig-
ure 11 the randomization of the updates removes the oscil-
lations in the spin-spin correlation functions of the batch
game. The corresponding volatilities are virtually identi-
cal to those of the corresponding on-line games above αc,
in particular we find σ2 = 1 for α > 1 in the game with
random updating and full anti-correlation, see Figure 12.
In the non-ergodic phase the effect of the stochastic up-
dating is a gradual reduction of the volatility.

5 Mixed population of speculators
and producers

The theory of Section 3 allows one in principle to study
the batch MG for an arbitrary distribution P (ρ) of corre-
lation parameters. While the previous section dealt only
with the case of unimodular distributions, we will now use
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Fig. 11. Amplitude of oscillations of the (unconditional) spin-
spin correlation function of the on-line game with adaptation
allowed only every M time steps. Oscillations are of period 2M .
All data is from simulations, the lines connecting the mark-
ers are guides to the eye. Solid symbols: ρ = 1/2 (squares
M = 10P , diamonds M = 25P , circles are the data for the
batch limit, plotted for comparison, see also Fig. 5). Open sym-
bols: ρ = 0 (diamonds M = 25P , right triangles M = 100P ,
left triangles M = 1000P , circles are the data for the batch
limit). All simulations are performed at P = 50 and run for
106 on-line steps, averages over 20 realisations of the disor-
der are taken [33]. Stars are the data for randomized updating
(ρ = 0, M = 10P , see Figure 12 for simulation details). No
oscillations are found in this case.

the above formalism to study a mixed population of ‘spec-
ulators’ and ‘producers’ [2]. While a speculator is defined
as a normal agent (holding two strategies), a producer
is an agent with limited choice and has only one single
strategy at his or her disposal (or equivalently two identi-
cal strategies, corresponding to full correlation, ρ = 1). A
detailed analysis of the statics of games with such mixed
populations is contained in [2]. In this final section be-
fore our conclusions we will complement this work by a
study of the dynamics of such models, and will demon-
strate that the dynamical theory reproduces the results of
the static replica analysis. The interplay of producers and
speculators is also discussed in a different context in [32],
where so-called grand-canonical MGs are considered7; see
also [20] for further details.

We will consider an ensemble of N agents, consisting of
(1− x)N speculators (with correlation 0 ≤ ρ < 1 between
their strategies) and xN producers, where 0 ≤ x < 1. This
corresponds to a choice

P (ρ′) = (1 − x)δ(ρ′ − ρ) + xδ(ρ′ − 1) (47)

in the above generating functional calculation. As before,
the parameter α = P/N is defined as the ratio between

7 In the grand-canonical games studied in [32] speculators
are agents who hold only one strategy (as opposed to two in
the present paper), but in addition they have the option not
to play at a given time step. Producers are agents with one
strategy, but who play at every time step.
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Fig. 12. Volatility of the game with randomized, asynchronous
strategy updating (allow for strategy switches with probability
1/M at each on-line step, independently for different agents).
Upper panel: uncorrelated strategies (ρ = 1/2), lower panel:
anti-correlated strategies (ρ = 0). All data is from simulations
at P = 50, the top most curves (circles) are for M = 1 (corre-
sponding to the on-line game), squares M = 0.1P , diamonds
M = P , triangles M = 10P . Simulations are started from
tabula rasa initial conditions and run for 200M on-line steps
(2000M steps for M = 0.1P ), all data is averaged over at least
10 realisations of the disorder. The horizontal lines mark the
random trading limit, σ2 = 1, in both panels [34].

the number of patterns and the total number of agents.
Using equations (25) and (26) we find

c =
1 − ρ

1 − ρ
(1 − x)c(ρ) (48)

χ =
1 − ρ

1 − ρ
(1 − x)χ(ρ), (49)

where ρ = (1 − x)ρ + x. c and χ are then determined
self-consistently using expressions (23) and (24) for c(ρ)
and χ(ρ). We have checked and confirmed these analytical
results for c against simulations for some choices of the
model parameters, but do not report the numerical data
here. After some more algebra we find

χ =

(
α/(1 − x)
erf
(
λ/

√
2
) − 1

)−1

, (50)

where λ is fixed as the root of the equation

√
2
π

e−λ2/2

λ
+
(

1 − 1
λ2

)

erf
(
λ√
2

)

+
α/(1 − x)

λ2

=
1

(1 − ρ)(1 − x)
. (51)

From this we locate the onset of diverging integrated
response as

αc = (1 − x)erf
(
λc√
2

)

, (52)
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Fig. 13. Phase diagram of the batch MG with a mixed
population of speculators and producers. The line in the
(α/(1−x), 1/[(1−x)(1− ρ)])-plane is given by (52). The cross
marks the location of the phase transition in the standard game
(q = 0, ρ = 0.5).

where λc solves
√

2
π

e−λ2
c/2

λc
+ erf

(
λc√
2

)

=
1

(1 − ρ)(1 − x)
. (53)

Note that αc/(1 − x), depends only on the combination
(1 − ρ)(1 − x). The resulting phase diagram is depicted
in Figure 13. The above equations obtained from the gen-
erating functional analysis agree with the corresponding
results from the replica calculation, as presented in [2]8.

Finally the generating functional approach allows one
to study the influence of decision noise on the phase dia-
gram and behaviour of MGs [16]. A corresponding calcu-
lation for mixed populations of producers and speculators
shows that multiplicative noise generally reduces the value
of αc/(1 − x), i.e. that the range of the ergodic phase is
increased when the trading decisions of the producers are
made stochastically to a certain degree [35]. This shift of
αc/(1− x) becomes more pronounced as the noise level is
increased. A similar effect was previously also observed in
MGs in which the agents trade on different time scales [13].

6 Concluding remarks

We have presented an analysis of the dynamics of Minority
Games with diversified strategies. Generating functional
techniques can be used to turn the coupled dynamics of
N interacting agents with heterogeneous strategy corre-
lations into an effective single-particle problem. The gen-
eral case of heterogeneous correlation parameters ρi of the
population of agents (drawn from a distribution P (ρ)) is

8 Note, however, that the conventions used in [2] are slightly
different, there an ensemble of N speculators and ρN producers
is considered (to make is (1 + ρ)N agents in total), and α is
defined as the ratio between the number of patterns P and the
number of speculators, α = P/N .

reflected in the fact that one finds an ensemble of single
agent processes as the final outcome of the theory, as op-
posed to just one effective single-agent process for the case
of uniform correlation parameter (ρi = ρ for all i).

In Section 5 of this paper we have used the developed
formalism to study mixed populations of ‘speculators’ and
‘producers’. The dynamical approach leads to order pa-
rameter equations which are identical to those obtained
previously from replica analyses of such models, and ac-
cordingly the phase diagrams obtained from the statics
and dynamics coincide. In general one finds that adding
producers to the MG increases the range of the ergodic
phase of the game.

The main focus of our study, however, has been the fur-
ther analysis of the dynamical effective single-agent prob-
lem for the cases of batch and on-line games with unimodal
distributions of the strategy correlations, along with nu-
merical simulations and complementing the analysis of the
statics of such games previously presented in [2].

We find that the model with uniform, but general cor-
relation parameter ρ exhibits intriguing features, with sim-
ilarities, as well as crucial differences, compared to the
game with uncorrelated strategies (ρ = 1/2).

The main common features of the games with gen-
eral correlation parameter are (a) the existence of two
distinct phases in both the on-line and batch games for all
0 ≤ ρ < 1, with an ergodic state for α > αc(ρ), in which
no dependence on initial conditions is found, and a non-
ergodic phase below αc(ρ), in which the nature of the sta-
tionary state depends on the configuration from which the
dynamics is started; (b) persistent oscillations are present
in the non-ergodic phases of both the batch and the on-line
games for all ρ. Above αc(ρ), oscillations are absent in on-
line games with arbitrary correlation parameter 0 ≤ ρ < 1,
and in batch games as long as ρ > 0; (c) for 0 < ρ < 1
the transition point between the two phases is marked by
a minimum of the volatility σ2 = σ2(α) in both the batch
and on-line games; (d) we find analytically that the persis-
tent order parameters in the stationary ergodic state and
the phase diagram do not depend on the details of the
update rules (batch versus on-line learning) and that they
agree with those calculated within the replica symmetric
approximation; (e) no oscillations are found in simulations
of games with random asynchronous updating (for neither
uncorrelated nor anti-correlated strategies), while at the
same time a reduction of the volatility in the non-ergodic
phases of such games is observed.

However, the study of games with differently correla-
ted strategies and different timings of adaptation also re-
veals some new features and striking differences between
on-line and batch games, which up to now have not been
discussed systematically in the literature. These new is-
sues may be summarised as follows: (i) the dynamics of
the batch game with fully anti-correlated strategies, ρ = 0,
appears different from the batch games with 0 < ρ < 1
and from the on-line game with ρ = 0, as in the batch
game at ρ = 0 oscillations of the form C(τ) = (−1)τ are
found for all α and not only in the low-α phase; for tab-
ula rasa initial conditions the volatility σ2 of the batch



T. Galla and D. Sherrington: Strategy correlations and timing of adaptation in Minority Games 167

game is a smooth function of α without any minima or
turning points. Nevertheless we find that the game with
fully anti-correlated strategies is in a non-ergodic state
for α < αc(ρ = 0) = 1 for both batch and on-line learn-
ing rules, with the usual dependence of macroscopic order
parameters on initial conditions in this regime; (ii) the
volatilities in batch and on-line games deviate increasingly
from each other as the correlation parameter ρ is lowered;
by allowing the agents to update their strategy preferences
synchronously only once every M steps it is possible to in-
terpolate smoothly between the on-line and batch limits,
M = 1 and M ≥ O(αN), respectively; (iii) the available
approximations for the volatilities of batch MGs, neglect-
ing the retarded self-interaction of fickle agents, become
unreliable in this regime of anti-correlated strategy assign-
ments. Thus, care has to be taken whenever these approxi-
mations are applied to other extensions of the conventional
batch MG. The corresponding approximations in the on-
line case, based on discarding transient contributions to
the response and correlation functions, however, appear
to be valid above αc(ρ) for all values of ρ, even in the case
of full anti-correlation.
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